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A Bayesian Latent Variable Selection Model for Nonignorable Missingness

Han Dua, Craig Endersa, Brian Tinnell Kellerb, Thomas N. Bradburya, and Benjamin R. Karneya

aDepartment of Psychology, University of California; bDepartment of Educational Psychology, The University of
Texas at Austin

ABSTRACT
Missing data are exceedingly common across a variety of disciplines, such as educational,
social, and behavioral science areas. Missing not at random (MNAR) mechanism where miss-
ingness is related to unobserved data is widespread in real data and has detrimental conse-
quence. However, the existing MNAR-based methods have potential problems such as
leaving the data incomplete and failing to accommodate incomplete covariates with interac-
tions, non-linear terms, and random slopes. We propose a Bayesian latent variable imput-
ation approach to impute missing data due to MNAR (and other missingness mechanisms)
and estimate the model of substantive interest simultaneously. In addition, even when the
incomplete covariates involves interactions, non-linear terms, and random slopes, the pro-
posed method can handle missingness appropriately. Computer simulation results sug-
gested that the proposed Bayesian latent variable selection model (BLVSM) was quite
effective when the outcome and/or covariates were MNAR. Except when the sample size
was small, estimates from the proposed BLVSM tracked closely with those from the com-
plete data analysis. With a small sample size, when the outcome was less predictable from
the covariates, the missingness proportions of the covariates and the outcome were larger,
and the missingness selection processes of the covariates and the outcome were more
MNAR and MAR, the performance of BLVSM was less satisfactory. When the sample size was
large, BLVSM always performed well. In contrast, the method with an MAR assumption pro-
vided biased estimates and undercoverage confidence intervals when the missingness was
MNAR. The robustness and the implementation of BLVSM in real data were also illustrated.
The proposed method is available in the Blimp software application, and the paper includes
a data analysis example illustrating its use.

KEYWORDS
Missing not at random;
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Missing data are exceedingly common across a variety
of disciplines such as the educational, social, and
behavioral sciences. Participants drop out of studies or
omit responses for a variety of reasons, some of which
are benign, but others of which can have serious con-
sequences on the validity of a statistical analysis if the
missing values aren’t dealt with properly. Mainstream
missing data handling methods typically assume a
missing at random (MAR) mechanism, whereby the
probability of missingness is only related to observed
scores (Little & Rubin, 2014). For example, students
could opt out of achievement testing for reasons
related to background variables such as socioeconomic
status, language proficiency but not to achievement
itself. The MAR assumption is reasonable in many
cases, but there are also many situations where miss-
ingness is related to unobserved scores themselves

(Little & Rubin, 2014). This type of missingness pro-
cess is called a missing not at random mechanism
(MNAR; also known as nonignorable missingness).
For example, in education, students with low achieve-
ment could have missing values on an achievement
test because they fail to finish the exam. Hence, the
missingness of the achievement scores is due to the
unobserved ability. In medical trial settings, values of
physical measures could be missing because patients
die during the treatment period. Therefore, the miss-
ingness of physical measure scores is due to the unob-
served physical status, even after conditioning on the
observed data. Additionally, in substance use cessation
studies, participants may skip a blood or urine test
because they are using substances and will have posi-
tive test results. In this case, the missingness of test
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results is directly related to the unobserved
test results.

If the true underlying missingness mechanism is
MNAR but an MAR-based analysis procedure is used,
previous research has shown that parameter estimates
will generally be biased (Enders, 2011; Fitzmaurice
et al., 2012; Graham, 2009; Yang & Maxwell, 2014).
The fundamental problem is that it is difficult to fully
rule out the possibility of MNAR mechanism because
the observed data carry no information about the
unobserved scores and their associations with other
variables. This makes correcting for MNAR inherently
complex because missingness depends on the unob-
served information. In practice, it is necessary to sim-
ultaneously estimate the analysis model of substantive
interest and an additional model for the nonresponse
process (e.g., a regression model where the outcome
or covariate predicts its own binary missing data indi-
cator). In other words, an MNAR mechanism requires
that we model the joint distribution of the data and
missingness, pðy, rÞ: In our generic notation, pðyÞ rep-
resents the distribution induced by the substantive
model (e.g., a linear regression model) and pðrÞ
denotes the corresponding distribution of missingness
model where r is the missing data indicator. In prin-
ciple, MNAR processes can apply to the outcome or
predictors in a substantive model. Existing literature
focuses on the nonignorable missingness on the out-
come, except that Ibrahim et al. (1999) and Ibrahim
et al. (2005) briefly showed how to handle nonignora-
ble covariates. This paper is the first one which
presents all combinations of missingness mechanisms,
whereas the previous literature focuses on missing
outcome or missing covariates separately.
Additionally, there are three distinctions between
Ibrahim’s work and our work, which will be elabo-
rated later. As a brief preview, our proposed Bayesian
procedure uses probit regression with latent variables
to model missingness.

There are two broad MNAR modeling frameworks:
the selection model and pattern mixture model.
Heckman (1976; 1979) originally proposed the selec-
tion model for an MNAR process on the outcome,
and Glynn et al. (1986), Little (1993; 1994), and Rubin
(1987) proposed the general form of the pattern-mix-
ture model. The two frameworks both integrate a
missingness model that captures the propensity for
missing data in the analysis, but they factorize the
joint distribution and operationalize the missingness
model differently. The selection model framework
partitions the joint distribution of the data and miss-
ingness as pðy, rÞ ¼ pðyÞpðrjyÞ: The second term,

pðrjyÞ, says that missingness is modeled as a function
of the incomplete variable y (Heckman, 1976, 1979).
As noted previously, this representation often entails
the simultaneous estimation of two models: a regres-
sion model for the outcome of substantive interest,
and a second model with y’s missing data indicator as
a function of y and possibly other variables. In con-
trast, the pattern-mixture model framework partitions
the joint distribution as pðy, rÞ ¼ pðrÞpðyjrÞ: The
second term, pðyjrÞ, describes how the model of sub-
stantive interest depends on the missing data pattern
(e.g., Little, 1993). This representation reverses the
role of r, such that the substantive analysis model
parameters vary across missing data patterns. In this
framework, the model of substantive interest can be
estimated separately for each missing data pattern
(usually with a set of identification constraints), or the
missing data patterns can appear as dummy-coded
covariates in the analysis (Hedeker & Gibbons, 1997).
Ibrahim et al. (1999), Huang et al. (2005), and
Ibrahim et al. (2005) provided and summarized meth-
ods to handle MNAR in generalized linear models.
The former two focused on the selection model, and
the latter discussed the pattern mixture model.
Galimard et al. (2016) and Galimard et al. (2018)
extended selection models to multiple incomplete
covariates in the chained equations framework. In
addition, a good deal of methodological research has
developed variants of these approaches for longitu-
dinal data. For example, Diggle and Kenward (1994)
outlined a selection model for longitudinal data analy-
ses. P. S. Albert and Follmann (2000), Follmann and
Wu (1995), Wu and Bailey (1989), and Wu and
Carroll (1988) proposed another type of longitudinal
selection model called a random coefficient selection
model (also referred to as the shared parameter
approach) whereby random effects predict missing-
ness. Extending the Diggle & Kenward selection
model, Daniels and Hogan (2008) proposed a
Bayesian selection model when longitudinal outcomes
are missing. Within the pattern-mixture model frame-
work, Roy (2003) introduced a pattern-mixture
method treating class membership as a latent variable.
Other applications have combined features of pattern-
mixture model and selection model or have otherwise
developed variants of the two frameworks (e.g.,
Beunckens et al., 2008; Dantan et al., 2008; Demirtas
& Schafer, 2003; Foster et al., 2004; Galimard et al.,
2016; Gottfredson et al., 2014; Hafez et al., 2015;
Mason et al., 2012; Muth�en et al., 2011; Roy &
Daniels, 2008; Yuan & Little, 2009). It is important to
emphasize that the selection and pattern mixture
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models are not exchangeable representations of the
joint distribution. For example, we would not expect
pattern mixture models to accurately capture a pro-
cess aligned with pðy, rÞ ¼ pðyÞpðrjyÞ, nor would we
expect our method to yield unbiased estimates if the
true process is pðy, rÞ ¼ pðrÞpðyjrÞ: This is an inherent
feature of MNAR modeling and not Bayesian estima-
tion, per se.

The major limitation of existing MNAR methods is
that they focus on incomplete outcomes and don’t
necessarily provide a mechanism for handling MNAR
explanatory variables except the expectation–maxim-
ization (EM) algorithm proposed by Ibrahim et al.
(1999) and Ibrahim et al. (2005). Recent studies have
described fully Bayesian estimation and imputation
approaches that allow for MAR covariates with inter-
actions, non-linear terms, and random slopes (e.g.,
Bartlett et al. 2015; Enders et al., 2020; Erler et al.,
2019, 2016; Goldstein et al., 2014; Kim et al., 2015,
2018; L€udtke et al., 2020; Zhang & Wang, 2017). We
refer to these methods generically as model-based esti-
mation and imputation because they essentially tailor
missing values to the substantive model of interest.
These approaches yield Bayesian estimates of the
model parameters, and they also generate imputations
that can be analyzed in the frequentist framework
with Rubin’s pooling rules (Rubin, 1987). As men-
tioned previously, our approach readily accommodates
an MNAR process for any variable in the model
including covariates, and thus it is a generalization of
existing model-based imputation.

The purpose of this study is to outline a fully
Bayesian latent variable selection model (BLVSM) to
impute missing data and estimate parameters of inter-
est where either covariates or outcomes follow an
MNAR (or MAR) process. The method falls in the
class of selection models outlined by Heckman and
others (Diggle & Kenward, 1994; Heckman, 1976,
1979; Huang et al., 2005; Ibrahim et al., 1999), and we
apply a Bayesian estimation procedure that simultan-
eously estimates the substantive regression model and
a probit regression model that invokes latent missing-
ness variables. Besides direct Bayesian inference, mul-
tiple imputations are a natural by-product of the
Markov Chain Monte-Carlo (MCMC) estimation algo-
rithm. These imputations can be analyzed in the fre-
quentist framework in lieu of direct Bayesian
inference to answer various of new research questions,
without requiring any special software. Our approach
can accommodate general missing data patterns and
the following scenarios: the outcome is MAR or
MNAR with a) complete covariates, b) incomplete

covariates with an MAR mechanism, and c) incom-
plete covariates with MNAR mechanism. It also can
be applied when the outcome is complete but covari-
ates are MAR or MNAR. Importantly, we extend the
work in Enders et al. (2020), where the substantive
analysis model supports incomplete MAR non-linear
functions such as interactive and polynomial effects.
This model-based estimation and imputation proced-
ure extends to accommodate incomplete MNAR cova-
riates with a variety of metrics (continuous, binary,
ordinal, or nominal). The proposed procedure is ready
in a forthcoming release of the software Blimp 3
(Keller et al., 2019). We are unaware of existing
approaches and software that can handle these combi-
nations of features, although the R package ’mdmb’
can estimate some selection models.

The outline of this paper is as follows: in “A
Typical Selection Model” section, an overview of
selection model is given. In “Bayesian Estimation of a
Selection Model with MAR Covariates” and “Bayesian
Estimation of a Selection Model with MNAR
Covariates” sections, we present the proposed fully
Bayesian latent variable selection model (BLVSM)
when covariates are MAR and MNAR, respectively. In
“Simulation Study 1: MAR Covariates”, “Simulation
Study 2: MNAR Covariates”, and “Simulation Study 3:
Misspecification” sections, the performance of BLVSM
when covariates are MAR and MNAR and when the
selection model is misspecified is thoroughly exam-
ined via simulations, respectively. In “A Real Data
Example” section, a real data example is provided to
illustrate BLVSM. We end the paper with some con-
cluding remarks in “Conclusion” section.

A typical selection model

In this paper, we consider the case where the missing-
ness is a function of the unseen scores and possibly
other variables. To illustrate the missing data handling
procedure for a MNAR mechanism, we start by focus-
ing on an incomplete outcome. We consider a simple
regression model where y has missing values and
missingness is a function of the y scores themselves.
As illustrated earlier, a selection model consists of two
components: the substantive model pðyÞ and the miss-
ingness model pðrjyÞ:

yi ¼ b0 þ b1xi þ ei ei � N 0, r2e
� �

r�yi ¼ c0 þ c1yi þ fi fi � N 0, 1ð Þ (1)

The first part of Equation (1) presents the substan-
tive model pðyÞ: We introduce a binary missing data
indicator ri, where ri ¼ 0 if yi is observed and ri ¼ 1
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if yi is missing. The second part of Equation (1)
presents the missingness model pðrjyÞ, which is a pro-
bit regression model defining missingness as a nor-
mally distributed latent variable (Johnson & Albert,
2006). r�yi is a continuous latent missingness variable
for individual i that represents an individual’s latent
propensity or proclivity for missing data. For example,
in an education context, yi could be an achievement
test score that is potentially missing for reasons
related to achievement ability itself (i.e., a student
may fail to finish the exam and thus it leads a missing
value), and r�yi represents how likely a student fail to
finish the exam. The fixed part of the missingness
model, c0 þ c1yi, defines the conditional mean
(expected value) of the latent variable. In other words,
the fixed part defines the systematic influence of miss-
ingness due to the unobserved outcome scores. The
residual fi is standard normal with variance fixed at
one for identification. Accordingly, the probit regres-
sion can be written as

Pr ri ¼ 1jyi
� � ¼ 1� U c0 þ c1yið Þ, (2)

where UðÞ is the cumulative distribution function of
the standard normal distribution. c0 þ c1yi is the pre-
dicted z-score of missingness propensity and Uð Þ
returns the proportion of the area below that z score
in a standard normal curve. The probit regression
model additionally incorporates a threshold parameter
j that divides the standard normal latent distribution
into two segments, such that ri ¼ 0 if r�yi < j and ri ¼
1 if r�yi � j: That is, the latent missingness scores
increase to a cut-point, above which the score
becomes missing. Note that j is typically fixed at zero
to avoid redundancy with the regression intercept, but
the model can also be parameterized by eliminating
the intercept and estimating the threshold. Because
estimating the threshold parameter is known to
exhibit slow convergence behavior (Cowles, 1996), we
adopt the former approach and fix the threshold
at zero.

Bayesian estimation of BLVSM with
MAR covariates

In this section, we describe the MCMC estimation
steps for the case where the outcome in the substan-
tive model is MNAR and the covariates are MAR.
The Bayesian framework views the substantive regres-
sion model parameters, missingness model parame-
ters, missing outcome scores, covariate model
parameters, and missing covariate scores as variables
to be estimated. The Gibbs sampler breaks this

complex multivariate problem involving parameters
and missing values into a series of simpler univariate
problems, each of which draws one of the unknown
quantities at random from a probability distribution
that conditions on the current values of all other
unknowns, which will be elaborated later (Gelfand &
Smith, 1990). After providing the posterior distribu-
tion of each variable, we illustrate how to estimate
each variable by Gibbs sampling procedure.

To illustrate our proposed Bayesian latent variable
selection model (BLVSM), we consider a single-level
substantive model with multiple covariates,

y ¼ Xbþ e, (3)

where y is a N � 1 vector of the outcome measures
for N individuals, X is a N � ðK þ 1Þ matrix for the K
covariates and one intercept, b is a ðK þ 1Þ � 1 vector
for the Kþ 1 regression coefficients, e is a N � 1 vec-
tor for independently distributed errors, and e �
Nð0, r2e IÞ: As noted previously, our model specifica-
tion readily accommodates incomplete interactive or
curvilinear effects (Enders et al., 2020), and it thus
extends recent research (Bartlett et al., 2015; Erler
et al., 2016; Goldstein et al., 2014; Grund et al., 2018;
Ibrahim et al., 2002; Kim et al., 2015, 2018; Zhang &
Wang, 2017) by accommodating an MNAR process
for the outcome and/or an MNAR process for the
covariates (presented in the next section). This com-
bination of features is a new contribution to the litera-
ture, although researchers have worked on MAR
covariates or MNAR outcome separately. To this end,
consider the following moderated regression model,
examples of which are exceedingly common in the lit-
erature (Aiken et al., 1991),

yi ¼ b0 þ b1x1i þ b2x2i þ b3x1ix2i þ ei,
ei � N 0, r2e

� �
:

(4)

In this case

X ¼
1 x1, 1 x1, 2 x1, 1x1, 2
1 x2, 1 x2, 2 x2, 1x2, 2
..
. ..

. ..
. ..

.

1 xN, 1 xN, 2 xN, 1xN, 2

0BBB@
1CCCA, b ¼

b0
b1
b2
b3

0BB@
1CCA:

The missingness of y is a function of the y scores them-
selves and x1 is incomplete due to an MAR process, and
hence x1x2 is incomplete. Indeed, regardless of whether
the covariates are complete or incomplete, the posterior
distributions of substantive model parameters, missingness
model, and missing outcome are not affected.

As mentioned above, when a missing outcome, yi,
is related to the unobserved scores (e.g., yi itself) for
individual i, we introduce a binary missing data
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indicator, ri, for which 1 indicates a missing outcome
and 0 indicates an observed outcome. We generalize
Equation (1) that the missingness not only depends
on the unobserved yi but also other variables to pro-
vide a more general form. Accordingly, an underlying
continuous latent missingness variable r�yi could be
directly modeled by a regression model

r�y ¼ Zcþ f, (5)

where r�y is a N � 1 vector of latent missingness propen-
sities for N individuals, Z ¼ ð1, y,MÞ is a N � ð2þ PÞ
matrix, M is a N� P matrix for causes of missingness
other than y itself, such as auxiliary variables, c is a ð2þ
PÞ � 1 vector, and f is a N � 1 vector of error term
with f � Nð0, IÞ: Past literature suggests that if M
incorporate the predictors in the substantive model X or
other predictors highly correlated with y, collinearity
problems may occur and be detrimental to estimation (
for details refer to Puhani, 2000; Stolzenberg & Relles,
1990, 1997 ). As discussed later, this does not appear to
be the case with BLVSM, and we will recommend
including variables from the substantive model in the
missingness model. Latent variable scores r�yi follow a
truncated normal distribution, such that r�yi is above the
threshold (j¼ 0) if yi is missing (i.e., ri ¼ 1) and below
the threshold if yi is complete (i.e., ri ¼ 0).

Posterior distributions of substantive
model parameters

We estimate the aforementioned selection model using
an iterative MCMC algorithm, Gibbs sampling, that
draws each unknown from a probability distribution that
conditions on all other unknowns. The remainder of this
section gives the full conditional distributions for the
estimation steps. To begin, augmenting the likelihood
with the latent missingness variable r�y gives

p y, r�yjc, b, r2e
� �

¼ p yjb, r2e
� �

p r�yjc, y,M
� �

¼ 2pr2�
� ��N

2 exp � y � Xbð Þ0 y � Xbð Þ
2r2e

 !

� 2pð Þ�N
2 exp � r�y � Zc

� �0 r�y � Zc
� �
2

� �
, (6)

where Z ¼ ð1, y,MÞ: We employ independent priors
that pðbÞ / 1 for all coefficients in b, pðr2�Þ ¼
IGða, aÞ, and pðcÞ ¼ Nð0, bÞ for all coefficients in c:

Note that pðcÞ needs to be weakly informative,
as some prior information is often needed to facilitate
convergence, particularly in small samples. We will
elaborate this point later in Simulation Study 1.

Based on the priors and the likelihood (Equation
6), the joint posterior distribution of c, b, and r2e is
constructed by Bayes’ theorem,

p c, b, r2� jy, r�y
� �

/ p y, r�yjc, b, r2e
� �

p c, b, r2e
� �

/ r2�
� ��N

2�a�1
exp � 2aþ y � Xbð Þ0 y � Xbð Þ

2r2e

 !
�

exp � r�y � Zc
� �0 r�y � Zc

� �
2

� �
� exp � c0c

2b

� �
(7)

Based on the joint posterior distribution of c, b, and
r2e , we can derive the conditional posterior distributions
one by one. Specifically, the conditional posterior distri-
bution of b is a multivariate normal distribution with �
indicating the variables and parameters conditional on

p bj�ð Þ ¼ MN b̂ ¼ X0Xð Þ�1
X0y, r2e X0Xð Þ�1

� �
: (8)

The conditional posterior distribution of r2� is
an Inverse-Gamma distribution,

p r2� j�
� � ¼ IG

N
2
þ a,

y � Xbð Þ0 y � Xbð Þ
2

þ a

� �
: (9)

In words, Equation (8) says that the substantive
model’s regression coefficients are drawn from
a multivariate normal distribution. The center and
spread of this distribution align with ordinary least
squares estimates of the coefficients and their parameter
covariance matrix, respectively, because of the specified
prior. Equation (9) says that the substantive model’s
residual variance is drawn at random from a right-
skewed inverse gamma distribution. The center and
spread of this distribution is determined by the degrees
of freedom, residual sum of squares, and prior informa-
tion. Note that the conditional posterior distributions of
b and r2� are exactly the same as those from any linear
regression problem using the same priors regardless of
whether the outcome and covariates are incomplete.

Posterior distributions of missingness model
parameters and missing outcome

Given the latent missingness propensity r�, the coeffi-
cients of the missingness model have a posterior with
a similar form as b: That is, the MCMC algorithm
draws a vector of regression coefficients from a multi-
variate normal distribution. The residual variance is
not an estimated parameter here, as it is fixed at 1.

p cj�ð Þ ¼ MN ĉ ¼
X�1

1
Z0r�y ,

X
1
¼ 1

b
� I þ Z0Z

� ��1
 !

:

(10)
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In words, Equation (10) says that the selection mod-
el’s regression coefficients are drawn from a multivari-
ate normal distribution. The center and variance are
determined by the latent data and current imputed
data. All that is left is to define the distributions of
the latent variable scores r�y and the missing values of
y. Latent variable scores can be modeled by a trun-
cated normal distribution,

p r�yij�
� �

¼ N Zic, 1ð ÞI j ¼ 0,1ð Þ ri ¼ 1
N Zic, 1ð ÞI �1, j ¼ 0ð Þ ri ¼ 0

,

�
(11)

where I denotes the indicator function, Zi denotes the
ith row of Z for individual i, and the threshold j is
fixed at 0. In words, this equation says that latent
missingness scores are drawn from one of two normal
distributions, both of which are centered at the pre-
dicted z-score from the regression equation (the mean
of the normal distribution) and have a fixed variance
equal to 1. Specifically, if yi is observed, a latent score
should be drawn from the region of the normal curve
below 0 (the fixed threshold parameter), as this area
corresponds to the region occupied by indicator scores
of r¼ 0. Otherwise, if yi is missing, a latent score
should be drawn from the region of the normal curve
above the threshold, as this area corresponds to the
region occupied by indicator scores of r¼ 1.

The posterior predictive distribution of the missing
outcome values has a complex mean and variance
structure that depends on the parameters of both
the substantive model and missingness model.
Conceptually, the mean of the normal distribution is a
predicted value, but that prediction accounts for y’s
role as an outcome in the substantive model and a
predictor in the selection model. The variance of the
imputations similarly depends on terms from both
models. Specifically, the posterior predictive
distribution is proportional to the augmented likeli-
hood in Equation (6)1

p yjr�y, c, b, r2e
� �

/ p y, r�yjc,b, r2e
� �

¼ MN
Xbþ cyr

2
e r�y � Z�yc�y
� �

1þ c2yr
2
e

,
r2e

1þ c2yr
2
e
I

 !
,

(12)

where cy is the regression coefficient for y in the miss-
ingness model, c�y are the regression coefficients
except for y in the missingness model, and Z�y are
the predictors in the missingness model except y.
Because Equation (12) is tedious to derive, alterna-
tively, we can use the Metropolis-Hastings algorithm

to empirically construct the posterior distribution and
estimate the missing outcome scores from this distri-
bution (Gilks et al., 1996; Hastings, 1970). The
Metropolis-Hastings algorithm can used to draw the
posterior samples of other parameters (i.e., b, r2e , and
r�y). Please see the supplemental materials for more
information for the Metropolis-Hastings algorithm.

Posterior distributions of missing covariates and
covariate model parameters

We assume that some of the covariates in the substan-
tive model are partially observed and that missingness
for the covariates depends on the fully observed cova-
riates, the outcome, and/or other auxiliary variables.
Suppose there are Q partially observed predictors (i.e.,
x1, :::, xQ) and K – Q fully observed predictors (i.e.,
xQþ1, :::, xK). We factorize the joint distribution of all
incomplete covariates as

p y, x1, :::, xQjxQþ1, :::, xK
� � ¼ p yjx1, :::, xK

� �
p x1, :::, xQjxQþ1, :::, xK
� �

,

where pðy, x1, :::, xQjxQþ1, :::, xKÞ is the joint distribu-
tion for all incomplete covariates and the outcome,
pðyjx1, :::, xKÞ is the distribution of y induced by the
substantive model (i.e., a normal distribution, condi-
tional on the covariates and possibly curvilinear or
interactive terms), and pðx1, :::, xQjxQþ1, :::, xKÞ is the
joint distribution of the incomplete covariates and
represents the covariate model (e.g., a normal
distribution for continuous and latent categorical
covariates). We assume that the conditional distribu-
tion of the incomplete covariate variables, pðx1, :::, xQj
xQþ1, :::, xKÞ, is a multivariate normal distribution,
such that the incomplete covariates are linearly
related. Based on this assumption, we can specify the
full conditional distribution for each incomplete cova-
riate given all other incomplete and complete covari-
ates as a univariate normal distribution. This is the
so-called “separate” specificationor fully conditional
specification for covariates (Enders, 2021; Enders
et al., 2020). Alternatively, a “sequential” specification
of the joint distribution (Erler et al., 2016, 2019;
Ibrahim et al., 2002; L€udtke et al., 2020) can accom-
modate non-linear relations among incomplete covari-
ates, and this approach is equivalent to the separate
specification when assuming multivariate normality.
Due to the scope and word limitation of this paper,
we illustrate details of the sequential specification
when covariates are MAR and outcome is MNAR in
the supplemental materials. The focus of the main
text is the separate or fully conditional specification

1The procedure is that multiplying the two components in Equation (6)
and finding a normal distribution for y which has the same kernel as
the product.
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because the separate specification is easier to imple-
ment and calculate especially for applied researchers.
It is generally harder to implement the sequential spe-
cification because the researcher needs to work out
how to factorize the joint distribution to achieve the
desired model. Under a separate specification, the
researcher just needs to specify the needed univariate
covariate model and nothing else. Our software Blimp
can accommodate either specification because the
sequential specification is an important alternate and
is the only option when researchers would like to
model nonlinear relations between covariates.

In the moderated regression example (Equation 4), to
impute x1 (or any of the covariates), we must derive its
conditional distribution given all of the other variables
including the outcome. Generally, we denote that xq
(q ¼ 1, :::,Q; e.g., x1 in Equation (4)) is the target of
imputation at a particular set, and x�q is set of all
remaining covariates including the complete covariates
except xq, that is x�q ¼ x1, :::, xðq�1Þ, xðqþ1Þ, :::,f
xQ, xQþ1, :::, xKg (e.g., x�1 ¼ x2f g in Equation (4)).
pðxqjx�qÞ is a linear regression of xq on all other covari-
ates which is the covariate model, and pðyjxq, x�qÞ is the
distribution of y induced by the substantive model (e.g.,
Equation (3)). We refer to this as the “separate” specifi-
cation because each incomplete predictor requires a
unique regression. Because xq appears in both terms on
the right side of the substantive model and on the left
side of the covariate model, its posterior distribution has
a complex form that depends on the product of two
normal distributions. The resulting distribution of xq
given all other variables is (Enders et al., 2020; Erler
et al., 2016; Kim et al., 2015)

p xqjy, x�q
� � / p yjxq, x�q

� �
p xqjx�q
� �

: (13)

In words, Equation (13) says that the distribution
of xq given all other variables depends on the distribu-
tion of y induced by the substantive model (xq is a
covariate in that model) and a normal distribution
induced by the regression of xq on all other predictors
(i.e., the covariate model). Deriving the distribution of
missing values involves multiplying all distributions
that feature xq then performing algebra that combines
the component distributions into a single function of
that covariate. We give the distribution below in
Equation (16). Particularly, the covariate model of xq
is pðxqjX�q,wq, r

2
e, qÞ,
xq ¼ X�qwq þ eq, (14)

where xq is a N � 1 vector of the target of imputation
covariate for N individuals, X�q ¼ ð1,XInc,�q,XobsÞ is a
N�K matrix (e.g., X�1 ¼ ð1,X2Þ in Equation (4)),

XInc,�q denotes all the incomplete covariates except xq
for N individuals, Xobs ¼ ðxQþ1, :::, xKÞ denotes all the
observed covariate for N individuals, wq is a K � 1 vec-
tor for for K regression coefficients, eq is a n� 1 vector,
and eq � Nð0, r2e, qIÞ: When assuming that the missing
predictor is conditional on auxiliary variables, the auxil-
iary variables enter Equation (14) as predictors. When
using the separate specification, it implies that the
incomplete covariates follow a multivariate normal distri-
bution and thus restrict incomplete covariates to be lin-
early related. Therefore, X�q cannot contain curvilinear
or interaction terms involving any incomplete covariates,
although the incomplete curvilinear and interaction
terms can appear in the substantive model. If one prefers
to use the sequential specification for the covariate
model, the details are provided in the supplemental
materials (e.g., Erler et al., 2016; L€udtke et al., 2020).

Note that we assume the missingness of the
outcome does not depend on the unobserved values
of xq in the above model. If the missing outcome is
not only related to the unobserved outcome itself but
also conditional on the incomplete covariates in the
substantive model (e.g., M ¼ X). Then the posterior
distribution of xq should consider its influence on the
underlying continuous latent missingness variable of
the outcome r�y by

p xqj�
� � / p yjX, b, r2e

� �
p xqjX�q,wq, r

2
e, q

� �
p r�yjc, y, xq,X�q

� �
:

(15)

But this missingness assumption may cause a col-
linearity problem.

Back to the moderated regression example in
Equation (4), there is no need to specify a model for
x1x2, as the lower-order terms are sampled from a
distribution that accounts for their role in the prod-
uct. Kim et al. (2015) show that estimating the lower-
order scores in this fashion is equivalent to sampling
x1 and the x1x2 product as a pair. We estimate x1 by
Equation (13) and compute x1x2 based on the
imputed x1 and x2. The covariate model for x1,
pðx1jx2Þ, is defined as a linear regression x1i ¼
w0 þ w1x2i þ ei with ei � Nð0, r2eÞ: The posterior dis-
tribution of x1 based on Equation (13) is

p x1i missð Þjyi, x2i
� � / p yijx1i, x2i

� �
p x1ijx2ið Þ

¼ N
r2e b1 þ b3x2ið Þ yi � b0 � b2x2ið Þ þ r2e w0 þ w1x2ið Þ

r2e b1 þ b3x2ið Þ2 þ r2e
,

r2er
2
e

r2e b1 þ b3x2ið Þ2 þ r2e

 !
:

(16)

The distribution of xq imputations is a normal distribu-
tion, albeit a complicated one with a mean and variance
that depend on two sets of model parameters. The mean
is a function of the substantive model’s parameters as well

MULTIVARIATE BEHAVIORAL RESEARCH 7



as the covariate model’s parameters. The variance similarly
depends on two models (note that the variance is hetero-
scedastic and depends on a participant’s moderator score).
As an aside, a result similar to Equation (16) cannot be
derived for incomplete curvilinear effects (e.g., yi ¼
b0 þ b1x1i þ b2x2i þ b3x

2
1i þ ei with incomplete x1)

(L€udtke et al., 2020). However, the absence of an analytical
form for this posterior distribution is not problematic in
practice, as we can use the Metropolis-Hastings algorithm
to estimate the missing covariates. This strategy provides a
more general solution across a variety of analytic scenarios,
including the ones we examine here. Note that the proced-
ure is not limited to a single incomplete covariate.

For the posterior distributions of coefficients in the
covariate model, wq and r2e, q, we employ a Jeffreys
prior where pðwÞ / 1 for all coefficients in wq and
pðr2e, qÞ / 1

r2e, q
for the covariate model. The posterior

distributions of wq and r2e, q have exactly the same
forms as the coefficients in substantive model. After
imputing the missing covariates, the conditional pos-
terior distributions of the substantive model parame-
ters, the conditional posterior distribution of the
regression coefficients in probit regression, and the
posterior distribution of the latent propensity r�y, and
the posterior predictive distribution of yiðmissÞ are the
same as the ones when the covariates are complete
(please see the previous section). More details are pre-
sented in the supplemental materials.

When the covariates have a missing completely at
random (MCAR) mechanism where the probability of
missingness of the covariates is unrelated to either
observed or unobserved variables, we still can use the
illustrated methodology in this section to impute
missing covariates and missing outcome, and estimate
the substantive model.

As mentioned previously, the previous approach
readily accommodates incomplete binary, ordinal, and
nominal covariates with MAR missingness mechanisms,
as does our later extension for NMAR covariates. We
just need to extend the previous equations to incorporate
a cumulative probit model for ordinal variables or
a multinomial probit model for nominal responses (e.g.,
Agresti, 2018; J. H. Albert & Chib, 1993; Johnson &
Albert, 2006; McCulloch & Rossi, 1994 ). Take a binary
covariate as an example, where we can use a binary pro-
bit regression to model the incomplete responses. In this
scenario, the model introduces an underlying normally
distributed random variable for an incomplete binary
covariate, with the variance of the latent covariate is usu-
ally fixed at 1 for identification (this is the same probit
model used for MNAR missingness on the outcome).
A threshold divides the distribution of the latent

continuous covariate into two segments, such that the
latent continuous covariate is below the threshold when
the binary variable equals zero and above the threshold
when the binary variable equals one. Compared to the
continuous covariates, instead of specifying Equation
(14) for incomplete binary covariate, we specify Equation
(14) for each latent continuous covariate and conditional
on all other latent continuous covariates. Note that this
latent continuous covariate is different from the afore-
mentioned latent missingness propensity r� when a vari-
able is MNAR, although it does use the same probit
regression framework. We refer the interested reader to
Enders et al. (2020).

Markov Chain Monte Carlo (MCMC)
computational algorithm

We propose a Gibbs sampling algorithm to sample b,
r2e , c, r

�
yi, and yiðmissÞ from their aforementioned

posterior distributions, and to obtain the posterior
inferences based on the Monte Carlo samples (Gelfand
& Smith, 1990). The Gibbs sampling algorithm is an
iterative procedure that estimates the variables one at a
time in a sequence (Gelfand & Smith, 1990): estimate
regression coefficients while holding all other variables
that their current values; estimate the residual variance
while holding all other variables constant, and so forth.
More specifically, it invokes the following steps: (a) esti-
mate the substantive model regression coefficients and
residual variance, (b) estimate the selection model’s
regression coefficients, (c) estimate the missingness pro-
pensity scores, (d) estimate outcome’ missing values (e)
estimate the covariate model’s regression coefficients
and residual variance, and (f) estimate covariates’ miss-
ing values. Each of these steps treats the current values
of all other unknowns as fixed constants. When the
posterior distribution is not accessible or difficult to
derive, the Metropolis-Hastings algorithm draws the
posterior samples.

The MCMC algorithm gives a posterior distribution
of each parameter, and we can use these quantities to
conduct Bayesian inference for the substantive model
parameters (i.e., b and r2e ). Alternatively, one can save
the imputations of missing data at regular intervals in
the MCMC chain (e.g., save a data set every 1000 iter-
ations) and use the filled-in data sets for a multiple
imputation analysis (Rubin, 1987; Schafer, 1997).
When frequentist estimation (e.g., ordinary least
squares estimation) is applied to the imputed com-
plete data to estimate the parameters in the substan-
tive model, this leads to a hybrid procedure (Bayesian
techniques are used for imputation and frequentist
methods are used for parameter estimation).
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The full cadre of step-by-step Gibbs sampler pro-
cedure is given below.
0. Initialization step: set initial values for bð0Þ,

r2ð0Þe , cð0Þ, and r�ð0Þy , and yð0ÞiðmissÞ (for the individu-
als who have missing outcome). For the individu-
als who have missing covariates, set initial values
for xð0Þq , wq

ð0Þ, and r2ð0Þe, q :

1. In the tth iteration, given covariates in the sub-
stantive model (X), the imputed outcomes in the
previous iteration (yðt�1Þ), and the residual vari-
ance of the substantive model in the previous iter-
ation (r2ðt�1Þ

e ), sample bðtÞ from Equation (8).
2. Given X, yðt�1Þ, and bðtÞ, sample r2ðtÞe from

Equation (9).
3. Given yðt�1Þ, the predictors M in the missingness

model, and r�y
ðt�1Þ, sample cðtÞ from Equation (10).

4. For all individuals, given r, yðt�1Þ and cðtÞ, sample
r�ðtÞy from Equation (11).

5. For the individual i who has missing outcome
(i.e., ri ¼ 1), given the covariates and/or auxiliary
variables, bðtÞ, r2ðtÞe , cðtÞ, and r�ðtÞyi , sample yðtÞiðmissÞ
from Equation (12). Repeat step 5 for all individ-
uals who have missing outcome and obtain a set
of updated imputed outcomes, yðtÞ:

6. For the qth incomplete predictor, given X�q
ðt�1Þ

and r2ðt�1Þ
e, q , sample wq

ðtÞ from Equation (2) in the
supplemental materials.

7. For the qth incomplete predictor, given X�q
ðt�1Þ

and wq
ðtÞ, sample r2ðtÞe, q from Equation (3) in the

supplemental materials.
8. For the individual i who has the qth missing

covariate, given yðtÞi ,X�qi
ðt�1Þ, bðtÞ, r2ðtÞ� , wq

ðtÞ,
and r2ðtÞe, q , sample xðtÞqiðmissÞ from Equation (13) by
Metropolis-Hastings algorithm. Repeat steps 6 to
8 for all individuals who have missing covariates
and impute all covariates. The missing interaction
terms can be calculated by the updated compo-
nents. For example, ðx1ix2iÞðtÞ ¼ xðtÞ1i � xðtÞ2i :

9. Repeat steps 1 to 8 until the MCMC chains reach
convergence and provide sufficient posterior samples.

Bayesian estimation of BLVSM with
MNAR covariates

In this section, we further extend the previous ideas
by allowing missingness of an incomplete covariate to
depend on the unobserved covariate variable itself.
Additionally, the missing covariate can depend on the
unobserved scores of other covariates, observed cova-
riates, auxiliary variables, and the outcome. The miss-
ingness of the outcome may also be conditional on
the unobserved outcome scores or the unobserved

covariate scores, or it can be MAR (or even MCAR).
As mentioned previously, the literature and existing
methods of MNAR generally have focused on MNAR
outcomes, except a few studies investigating MNAR
covariates (Huang et al., 2005; Ibrahim et al., 1999;
2005). The existing literature has worked on MNAR
covariates, MNAR outcome, MAR covariates, or MAR
outcome. Our approach is more general than the pre-
vious models because it can accommodate MNAR
covariates, MAR covariates, MAR/MNAR outcome, or
all of them simultaneously. Although putting the
models in the previous literature together also can
accommodate all of the aforementioned cases, this
paper is the first one which systematically presents all
cases. Additionally, there are three major differences
between our work and the work from Ibrahim’s
group. First, Ibrahim et al. (1999) and Ibrahim et al.
(2005) proposed algorithms to handle MNAR covari-
ates in the expectation–maximization (EM) frame-
work, whereas we use Bayesian statistics. As a
Bayesian method, our method can use informative
priors and incorporate prior information (e.g., from
existing papers or pilot results). Second, Ibrahim et al.
(1999) and Ibrahim et al. (2005) focused on the
sequential specification which we present in the sup-
plemental material, whereas we focus on the separate
or fully conditional specification which may be more
widely used when researchers assume a linear rela-
tionship between covariates. Third, our separate speci-
fication assumes that the missingness latent variables
(propensities) are independent after controlling for
the influence of the cause of missingness, whereas
Ibrahim’s sequential specification assumes that the
missingness latent variables are still correlated after
controlling for the influence of the cause of missing-
ness. However, Ibrahim’s sequential specification may
cause nonconvergence and we may need to simplify
the model by assuming that the missingness latent
variables are independent after controlling for the
influence of cause of missingness, which is kind of
back to the separate specification. We refer audiences
to the supplemental material for more details about
the sequential specification.

Suppose there are Q partially observed covariates
which are MNAR, and K – Q fully observed covari-
ates. Similar to the case where the outcome is MNAR.
A missing indicator rx, q is used to indicate the
missingness of the qth missing covariate xq. rx, q does
not apply to the interaction terms in the substantive
model. An underlying random variable r�x, q captures
the latent propensity of missingness for the qth
missing covariate xq. When we assume the
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missingness of xq is conditional on the unobserved xq
and the other covariates, the missingness or selection
model is

1r�x, q ¼ Xcx, q þ fx, q, (17)

where r�x, q is a N � 1 vector of latent missingness
propensities of xq for N individuals, X ¼ ð1, xq,X�qÞ
is a N � ðK þ 1Þ matrix and X�q are the covariates
other than xq, cx, q is a ðK þ 1Þ � 1 vector, and fx, q is
a N � 1 vector following Nð0, IÞ (as mentioned above,
the residual variance is fixed at one for identification).
The missing indicator rx, q is conditional on the
propensity r�x, q through a probit regression, Pðrx, q ¼
1jXÞ ¼ UðXcx, qÞ: This is the same model as before.
The r�x, q variable is a latent missingness variable scaled
as a z-score, and the right side of the expression
features potential predictors of missingness (typically,
xq plus other substantive model variables).

Besides the missingness probit model of rx, q, a
regressive covariate model specifies the relation
between xq and all other covariates,
pðxqjX�q,wq, r

2
e, qÞ, which is the same as Equation

(14) if the separate specification is used. Thus, the
joint conditional distribution of xq and its latent miss-
ingness variable r�x, q is factored into three compo-
nents: the substantive model, the covariate model of
xq, and the missingness model of xq,

p xq, r
�
x, qjy,X�q, b, r

2
e ,wq, r

2
e, q, cx, q

� �
/ p yjxq,X�q, b, r

2
e

� �
p xqjX�q,wq, r

2
e, q

� �
p r�x, qjcx, q,X
� �

:

(18)

If one prefers to use the sequential specification for
the covariate model and the missingness model, the
details are provided in the supplemental materials.
With the sequential specification, we can accommo-
date the nonlinear relations between the covariates
and latent missingness variables.

When interaction or curvilinear terms in the sub-
stantive model are incomplete, each missing covariate
appears multiple times in the substantive model and
we need to extract it from all the relevant

components. We use the example where there is one
partially observed covariate x1 and one partially
observed interaction term. The substantive model, the
missingness probit model for y, the regressive covari-
ate model for x1, and the missingness probit model
for x1 are respectively

yi ¼ b0 þ b1x1i þ b2x2i þ b3x1ix2i þ ei ei � N 0, r2e
� �

r�yi ¼ c0 þ c1yþ fi ei1 � N 0, 1ð Þ
x1i ¼ w1, 0 þ w1, 1x2i þ ei1 ei1 � N 0,r2e, 1

� �
r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ fx, 1i fx, 1i � N 0, 1ð Þ:

(19)

x1 appears in both x1 and x1x2: Based on Equation
(18), for individual i, the conditional posterior
distribution of x1i is

The analytical form for imputing x1i is complex,
and it is specific to the particular substantive model,
Equation (19). Generally, the Metropolis-Hastings
algorithm is suggested to draw the posterior samples
in practice, as this algorithm allows the procedure to
extend to covariate sets with an arbitrary composition
and general missing data patterns. Nevertheless, the
equation follows the same basic form as before. That
is, the mean and variance combines information from
three regressions – the substantive model, the covari-
ate model, and the selection model in which x1 plays
a role. If x1 plays a role in multiple selection models,
we need to consider all of them.

The posterior predictive distribution of r�x, qi is con-
ditional on the missing predictor indicator rx, qi and
imputed predictors Xi (Xi ¼ ð1, x1iÞ in the example of
Equation (19)),

p r�x, qij�
� �

¼ N Xicx, q, 1
� �

I j ¼ 0,1ð Þ rx, qi ¼ 1
N Xicx, q, 1
� �

I �1, j ¼ 0ð Þ rx, qi ¼ 0
:

(
(21)

In words, this equation says that latent missingness
scores are drawn from one of two normal distribu-
tions, both of which are centered at the predicted z-
score from the regression equation (the mean of the
normal distribution) and have a fixed variance equal
to 1. Specifically, if xqi is observed, a latent score

p x1ij�ð Þ / p yijx1i, x2i,b, r2e
� �

p x1ijx2i,w1, r
2
e, 1

� �
p r�x, 1ijx1i, x2i, cx, 1
� �

¼ N
r2e, 1 b1 þ b3x2ið Þ yi � b0 � b2x2ið Þ þ r2e w1, 0 þ w1, 1x2i

� �þ r2e, 1r
2
e cx1, 1 r�x, 1i � cx1, 0

� �
b1 þ b3x2ið Þ2r2e, 1 þ r2e þ c2x1, 1r

2
e, 1r2e

,
r2e, 1r

2
e

b1 þ b3x2ið Þ2r2e, 1 þ r2e þ c2x1, 1r
2
e, 1r2e

 !
:

(20)
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should be drawn from the region of the normal curve
below 0 (the fixed threshold parameter), as this area
corresponds to the region occupied by indicator scores
of rx, qi ¼ 0: Otherwise, if xqi is missing, a latent score
should be drawn from the region of the normal curve
above the threshold, as this area corresponds to the
region occupied by indicator scores of rx, qi ¼ 1:

We employ weakly informative prior pðcx, qÞ ¼
Nð0, bÞ for all coefficients in cx, q in the missingness
model of xq to facilitate convergence in MNAR case,
as for c in the missingness model of y. Similar to
Equation (10), the conditional posterior distribution
of cx, q is a multivariate normal distribution,

p cx, qj�
� � ¼ MN dcx, q ¼

X�1

1
X0r�x, q,

X
1
¼ 1

b
� I þ X0X

� ��1
 !

:

(22)

X ¼ ð1, x1Þ in the example of Equation (19). In
words, Equation (22) says that the selection model’s
regression coefficients are drawn from a multivariate
normal distribution, and the center and variance are
determined by the latent data and current imputed
data. The conditional posterior distribution of r2e, q is
the same as Equation (3) in the supplemental materi-
als, and the conditional posterior distribution of wq is
the same as Equation (2) in the supplemental materi-
als. After imputing the missing covariates, the condi-
tional posterior distributions of the substantive model
parameters, the conditional posterior distribution of
the regression coefficients in probit regression for y,
and the posterior distribution of the latent propensity
r�y for y, and the posterior predictive distribution of
yiðmissÞ are the same as the ones when the covariates
are MAR/complete.

When a categorical covariate has a MNAR mechan-
ism, we will need two probit regression models (one
for the binary covariate and another for its missing-
ness model), and we will need both the latent covari-
ate and the latent missingness propensity. For
example, suppose x1 is a incomplete binary variable
with a MNAR mechanism. First, x�1 is the latent x1. x�1
does not appear in the substantive analysis but only is
used to in the covariate model to impute the missing
x1. The first probit regression model describes the dis-
tribution of x�1: A threshold (usually fixed at 0) divides
the normal distribution of x�1 into two segments, such
that the x�1 is below the threshold if x1 ¼ 0 and above
the threshold if x1 ¼ 1: Second, the latent missingness
propensity r�x, 1 provides a latent missingness propen-
sity for x�1: The second probit regression model is a
missingness model, which captures how x�1 influence
the missingness propensity of r�x, 1: This missingness

model is the same as Equation (17) with a difference
that the propensity is on the latent covariate and the
predictors in the probit model are also on the latent
variable scales. For example, r�x, 1 ¼ cx, 1, 0 þ cx, 1, 1x

�
1 þ

fx, 1: We will illustrate more details in Simulation
Study S2 in the supplemental materials.

Markov Chain Monte Carlo (MCMC)
computational algorithm

The step-by-step Gibbs sampler procedure when the
outcome is MNAR and the covariates are MNAR is
given below. The first five steps generate estimates for
the substantive analysis model, the missingness model,
and missing outcomes. Steps 6-7 generate estimates
for the parameters in the covariate model. Steps 8-10
target on the missingness model for covariates and
missing covariates.

0. Initialization step: set initial values for bð0Þ,
r2ð0Þe , cð0Þ, and r�ð0Þy , and yð0ÞiðmissÞ (for the individuals
who have missing outcome). For the individuals who
have missing predictors, set initial values for xð0Þq ,
wq

ð0Þ, r2ð0Þe, q , cx, q
ð0Þ, and r�x, q

ð0Þ,
1-7. Steps 1-7 are exactly the same as the ones in

the section of MAR covariates.
8. For the qth incomplete predictor, given X�q

ðt�1Þ

and r�x, q
ðt�1Þ, sample cx, q

ðtÞ from Equation (22).
9. For all individuals, given Xðt�1Þ and cx, q

ðtÞ,
sample r�x, q

ðtÞ from Equation (21).
10. For the individual i who has the qth missing

predictor, sample xðtÞqiðmissÞ from Equation (18) by
Metropolis-Hastings algorithm. Repeat steps 6 to 10
for all individuals who have missing covariates and
impute all covariates.

11. Repeat steps 1 to 10 until the MCMC chains
reach convergence and provide sufficient poster-
ior samples.

Simulation study 1: MAR covariates

Simulation study 1: Simulation design

This simulation study examines the performance of
the proposed Bayesian latent variable selection model,
BLVSM, when x1 is MAR and y is MNAR. We also
conducted a simulation where y is MNAR and covari-
ates are complete (see Simulation Study S1 in the sup-
plemental materials). The substantive model for the
simulation is the widely-used moderated regression
model in Equation (4). The missing values on the out-
come y were generated as a function of y itself and
the missing values on x1 were generated as a function
of x2. We varied the values of the following four
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factors. (1) The first factor is the sample size (SZ¼ 50,
100, 200, 500, or 1000). (2) The second factor is the
missing data proportion/probability for y (Py ¼ 0.1,
0.2, or 0.4). (3) The third factor is the pseudo coeffi-
cient of determination between the cause of missing-
ness and the latent propensities of y, R2

r�y
¼ 0.1, 0.25,

or 0.5 (McKelvey & Zavoina, 1975). When R2
r�y
is large,

the MNAR selection process of y is strong and the
missingness of y heavily depends on y. When R2

r�y
is 0,

the missingness of y is independent from y, which
leads to a missing completely at random (MCAR)
case whereby the probability of missingness is not
related to any observed variables or unobserved varia-
bles. Because in practice, we don’t know the true
missingness mechanism, it is important to check
whether estimating a model for the missingness nega-
tively impacts the substantive analysis when the
MNAR selection process is very weak and almost
MCAR. (4) The fourth factor is the missing data pro-
portion for x1 (Px1 ¼ 0.1, 0.2, or 0.4). (5) The fifth
factor is the pseudo coefficient of determination
between x2 and the latent propensities of x1 (R2

r�x1
¼

0.1, 0.25, or 0.5). When R2
r�x1

is large, the MAR selec-
tion process of x1 is strong. When R2

r�x1
is 0, the miss-

ingness of x1 does not depend on x2 or any observed/
unobserved scores, which is a MCAR case. The coeffi-
cient of determination in the substantive model R2

y

(the proportion of the variance in the outcome that is
predictable from the covariates, x1, x2, and x1x2) is
fixed at 0.13, a medium effect size (Cohen, 1988). By
fixing the mean and variance of y at E(y) ¼ 5 and
var(y) ¼ 10, fixing the means of x1 and x2 at 0, fixing
the regression coefficients at 1, and fixing the
correlation between x1 and x2 at 0.3, we can solve the
variances of x1 and x2 and the residual variance r2e
given a specific value of R2

y (the mean and variance
of the interaction term is determined by formulas in
Bohrnstedt and Goldberger (1969)).

We used a probit regression equation to link
missingness probabilities of y to the values of y
(r�yi ¼ c0 þ c1yi þ fi with fi � Nð0, 1Þ) and another
probit regression equation to link missingness proba-
bilities of x1 to the values of x2 (r�x, 1i ¼ cx, 1, 0þ
cx, 1, 1x2i þ fx, 1i, fx, 1i � Nð0, 1Þ). Using a latent variable
formulation for probit regression (Agresti, 2018;
Johnson & Albert, 2006), we derived c0, c1, cx, 1, 0, and
cx, 1, 1 that produced the desired missing data propor-
tion Py, R2

y , Px1 and R2
r�x1

values. Finally, we sampled a
missing data indicator for each observation
(0¼ observed, 1¼missing) from a binomial distribu-
tion with success rate equal to that observation’s miss-
ingness probability from the probit regression model,

and we deleted scores with indicator values of one.
But when we estimate the missing covariates, we do
not need to estimate its probit model. Instead, we
specify a covariate model x1i ¼ w0 þ w1x2i þ ei, ei �
Nð0, r2eÞ and use Equation (13) to impute the missing
x1. There were 1000 replications under
each condition.

As a comparison, we first applied the ordinary least
squares estimation (OLS) to the original complete
data. The results from the complete data are treated
as the simulation baselines. We also applied a misspe-
cified Bayesian method with assuming that both x1
and y are MAR to the incomplete data. When we
assume the outcome is MAR, we simply draw y from
Nðb0 þ b1x1i þ b2x2i þ b3x1ix2i, r

2
eÞ and ignore the

missingness model. In addition to the Bayesian sum-
maries of the model parameters (we refer it to as the
full Bayesian approach), we also saved imputed data
sets and applied multiple imputation inference. More
specifically, we used our proposed approach to impute
missing data, saved 20 complete sets of data from
the posterior samples of the converged chains, and
conducted multiple imputation (20 imputations were
suggested by Graham et al. (2007)). We used the OLS
estimator to fit Equation (4) to the multiply imputed
data sets, and pooled estimates and standard errors
based on Rubin’s pooling rules (see Rubin (1976) and
Schafer (1997) for more details).

The following priors of the model parameters were
used: pðbÞ / 1, pðr2�Þ ¼ IGð1, 1Þ, pðwÞ / 1, pðr2e, qÞ /
1

r2e, q
, and pðcÞ ¼ Nð0, var ¼ 10Þ: The priors on b and

w are the Jeffreys prior, which is widely known as
noninformative. The priors on c and r2� are all weakly
informative priors which contain little information
but facilitate convergence. IGð1, 1Þ is a flat distribu-
tion, which gives an almost equal prior probability in
a relatively wide parameter space, and Nð0, var ¼ 10Þ
has a relatively large prior variance.2 The initial burn-
in period was 104, after that we checked convergence
every 2� 104 iterations, and all the iterations before
the converged 2� 104 iterations were treated as the
final burn-in period. Geweke (1992) convergence

2Based on our pilot simulations, if we used noninformative prior for c
(i.e., pðcÞ / 1), sometimes we could get converged results but sometimes
not, which depended on the data. The default prior for coefficients in
probit regression with missing data is Nð0, 5Þ in Mplus. We found that
prior variance of 5, 10 or 15 did not yield observably different results,
and it could ensure convergence results in almost all cases. In addition, r�
is scaled as a z-score, and we checked various probit regressions to
capture the relation of y and r� under different scenarios. We found that
c was not large across conditions. Therefore, we use the prior variance of
10 in the normal prior of c, which is still quite large but small enough to
induce additional information that facilitates convergence. In real data
analysis, researchers can modify this weakly informative prior based on
each specific data.
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diagnostic was used. If after 20 times, the chain still
did not converge, we claimed nonconvergence. The
simulation was coded in R.

We compared the performance of BLVSM with
that of the misspecified method with an MAR
assumption, based on the accuracy of the point esti-
mates via the bias and relative bias, and both the
accuracy and precision via the coverage rates of the
95% confidence intervals (CI) or posterior credible
intervals for each parameter of interest. Denote a par-
ameter of interest by h. The bias and relative bias are
calculated by averaging ĥr � h and ĥr�h

h � 100% (when
h 6¼ 0) respectively across the 1000 replications, where
ĥr is the point estimate from the rth replication. ĥr
was calculated using the posterior mean or mode. We
consider average relative bias (averaging over 1000
replications) lower than 10% as ignorable (L. K.
Muth�en & Muth�en, 2002). The OLS estimation from
the complete-data (pre-deletion) is used as a reference.
Both the quantile-based probability (QBP) interval
and the highest posterior density (HPD) interval were
obtained as credible intervals. The coverage rate was
calculated as the proportion of the 95% credible/confi-
dence intervals covering the true parameter value. We
considered coverage rates between 91% and 98% as
satisfactory (L. K. Muth�en & Muth�en, 2002).

Simulation study 1: Simulation results

The convergence rates in all conditions were over
94% for BLVSM, and they were 100% for the misspe-
cified method with an MAR assumption. This finding
is practically important because modeling an MNAR
process is computationally challenging relative to an
MAR analysis. The fact that the more complicated
modeling task reduced convergence rates by only 6%
across a wide range of conditions is encouraging. The
detailed summaries of each method under each condi-
tion are found in the supplemental materials. The
main findings on the performance of each method are
summarized below.

We first focus on BLVSM. In terms of biases, when
the sample size exceeded 200 (SZ> 200), the biases
were negligible. When the sample size was less than
or equal to 200 (SZ � 200), the posterior mode – the
most likely value for a parameter from its posterior
distribution – was found to be less biased than the
posterior mean for r2e , c0, and c1. The posterior mode
and mean were similar for b0, b1, b2, and b3 which
are the main focus of the substantive model. The
point estimates from multiple imputation were very
close to the posterior means for the full Bayesian

approach. As such, we focus on the the posterior
mode from the full Bayesian approach. We found that
the influence of the sample size (SZ), the missingness
proportion (Py), the pseudo coefficient of determin-
ation between y and the latent propensities of y (R2

r�y
),

the missingness proportion of x1 (Px1), and the
pseudo coefficient of determination between the x2
and the latent propensities of x1 (R2

r�x1
) were consistent

for b0, b1, b2, and b3: In the interest of space, we
select the minimum and maximum values of Py,
R2
r�y
,Px1, and R2

r�x1
to illustrate the bias results in fig-

ures. More specifically, the average relative biases of
b3 are presented in Figure 1, the average relative
biases of b0 and b1 are presented in Figure 2, and the
average relative biases of b2 and r2e are presented in
Figure 3. In figures, each cell represents a combin-
ation of different levels of Py, R2

r�y
,Px1, and R2

r�x1
, and

different lines represent the relative biases from
BLVSM with an MNAR process, the misspecified
model with an MAR assumption, and the complete
data respectively. The row panel effects reflect the
influence from Px1 and R2

r�x1
, and the column panel

effects reflect the influence from Py and R2
r�y
: When

the sample size was greater than or equal to 200, the
relative biases of b0, b1, b2, b3, and r2e were ignorable
and very close to the OLS estimates from the com-
plete-data. We found that when the sample size was
less than or equal to 100, BLVSM provided smaller
biases for b0, b1, b2, and b3 when (1) the missingness
proportion of y was smaller (see cells across column
panels with different Py in Figures 1–3), (2) the
MNAR selection process of y was weaker (see cells
across column panels with different R2

r�y
in Figures

1–3), (3) the missingness proportion of x1 was smaller
(see cells across row panels with different Px1 in
Figures 1–3), and (4) the MAR selection process of
x1 was weaker (see cells across row panels with dif-
ferent R2

r�x1
a in Figures 1–3). But the positive biases

of the r2e estimates were smaller with a larger R2
r�y

and a larger Px1 (see Figure 3). When the MNAR
selection process was weak, incorporating the latent
missingness model in BLVSM did not negatively
impact the substantive analysis and again provided
unbiased estimates.

Next, consider the misspecified method with an
MAR assumption. In terms of biases, when the
MNAR selection process was strong (R2

r�y
� 0:25), the

estimates of b0, b1, b2, b3, and r2e in the misspecified
method with an MAR assumption were underesti-
mated relative to their true values (i.e., >10% relative
bias) and increasing sample size did not effectively
improve the point estimates. Only when the MNAR
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selection process was weak (R2
r�y
¼ 0:1) could the mis-

specified model with an MAR assumption approxi-
mate the complete-data estimates; the MAR-based
analysis was still inferior to BLVSM in this case,
although the difference was not practically significant
(see Figures 1–3).

In terms of the coverage rates, the QBP intervals
had slightly better coverage rates than the HPD inter-
vals in both BLVSM and the misspecified Bayesian
method with an MAR assumption. The differences

between the confidence intervals from multiple imput-
ation and the QBP intervals in the full Bayesian
approach were trivial. As such, we focus on the QBP
intervals in the full Bayesian approach. The coverage
rates for b0, b1, b2, and r2e are presented in Figure 4
after fixing R2

r�x1
¼ 0:5 and Px1 ¼ 0:4 (the most severe

MAR case for the incomplete covariate) and selecting
the minimum and maximum values of Py and R2

r�y
(i.e., the missingness proportion of y and strength of
the selection mechanism, respectively). The effects of

Figure 1. Average relative biases of b3 from the Bayesian latent variable selection model, the misspecified method with an MAR
assumption, and the ordinary least squares estimation (OLS) with the original complete data in Simulation Study 1 (MNAR selection
process of Y is denoted as R2r�y , Y missingness is denoted as Py, MAR selection process of X1 is denoted as R2r�x1 , and X1 missingness
is denoted as Px1).
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Figure 2. Average relative biases of b0 and b1 from the Bayesian latent variable selection model, the misspecified method with an
MAR assumption, and the ordinary least squares estimation (OLS) with the original complete data in Simulation Study 1 (MNAR
selection process of Y is denoted as R2r�y , Y missingness is denoted as Py, MAR selection process of X1 is denoted as R2r�x1 , and X1
missingness is denoted as Px1).
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Figure 3. Average relative biases of, b2 and r2e from the Bayesian latent variable selection model, the misspecified method with
an MAR assumption, and the ordinary least squares estimation (OLS) with the original complete data in Simulation Study 1 (MNAR
selection process of Y is denoted as R2r�y , Y missingness is denoted as Py, MAR selection process of X1 is denoted as R2r�x1 , and X1
missingness is denoted as Px1).
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Py, R2
r�y
, and the sample size are the column panel

effect, row panel effect, and the x-axis effect within
each cell, respectively. For BLVSM, the coverage rates
of b0, b1, b2, and r2e were close to the nominal level
(95%) except when the sample size was less than or
equal to 100 (see the x-axis effect in Figure 4). With a
small sample size, there could be undercoverage. For
the misspecified method with an MAR assumption,
the coverage rates for b0, b1, b2, and r2e were far
below the nominal level and even close to 0 in some
cases (see Figure 4). Even when the MNAR selection
process was weak (R2

r�y
¼ 0:1), severe undercoverage

was observed.
Turning to the covariate model, the estimates of

w0, w1, and r2e were unbiased and coverage rates were
acceptable from BLVSM across all the manipulated
conditions (see the supplemental materials). For these
particular parameters, the misspecified method with
an MAR assumption provided similar but slightly
worse estimates than the correctly-specified model,
BLVSM. When the sample size was greater than or
equal to 50 (SZ � 50), the estimated w0, w1, and r2e
from the MNAR and MAR methods were essentially
the same as the OLS estimates from the complete-
data. Besides the parameters in the substantive and
covariate models, BLVSM estimates c0 and c1 in the
missingness model for y. The estimation of these coef-
ficients was challenging, and we observed negative
biases and undercoverage of credible intervals when
the sample size was not large enough (SZ � 200, see
the supplemental materials). This was an interesting
and encouraging finding, given that the substantive
model parameters were largely unaffected by the
biases in the missingness model or at least achieved
their optimal properties at a smaller sample size.

Simulation study 2: MNAR covariates

Simulation study 2: Simulation design

The moderated regression model in Equation (4)
again served as the substantive model for the simula-
tion. This simulation study examined the performance
of the proposed method when both x1 and y are
MNAR. The missing values on the outcome y were
generated as a function of y itself and the missing val-
ues on x1 were generated as a function of x1 itself.
The conditions were the same as the second simula-
tion (SZ, Py, R2

r�y
, and Px1) except that the fifth factor

is the pseudo coefficient of determination between x1
and the latent propensities of x1 which reflects the
strength of MNAR selection process of x1 (R2

r�x1
¼ 0.1,

0.25, or 0.5). We used a probit regression equation to

link missingness probabilities of y to the values of y
(r�yi ¼ c0 þ c1yi þ fi with fi � Nð0, 1Þ) and another
probit regression equation to link missingness proba-
bilities of x1 to the values of x1
(r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ fx, 1i, fx, 1i � Nð0, 1Þ). When
we estimate the missing x1, we not only estimate the
probit model but also estimate the covariate model
x1i ¼ w0 þ w1x2i þ ei, ei � Nð0, r2eÞ: The coefficient of
determination in the substantive model R2

y is fixed
at 0.13.

As a comparison, we applied the OLS estimator to
the original complete data and applied the MAR
method with assuming that both x1 and y are MAR
assumption to the incomplete data. When we assume
x1 is MAR, we draw x1 from Equation (13). In add-
ition, we conducted multiple imputation. The follow-
ing priors of the model parameters were used:
pðbÞ / 1, pðr2�Þ ¼ IGð1, 1Þ, pðwÞ / 1, pðr2e, qÞ / 1

r2e, q
,

pðcÞ ¼ Nð0, 10Þ and pðcx, qÞ ¼ Nð0, 10Þ (weakly
informative prior to facilitate convergence). The burn-
in period is the same as Study 1.

Simulation study 2: Simulation results

The convergence rates of all conditions were again
over 94% when modeling an MNAR process on both
the outcome and the explanatory variable. Given the
complexity of this modeling problem, we found this
result very encouraging. The detailed summaries of
each method under each condition are in the supple-
mental materials, and the main findings are summar-
ized below.

We again focus on the posterior mode from the
full Bayesian approach. We select the minimum and
maximum values of Py, R2

r�y
, Px1 and the pseudo coef-

ficient of determination between x1 and the latent
missingness propensities of x1 (i.e., R2

r�x1
) to illustrate

the bias results (Figures 5–7). In figures, each cell rep-
resents a combination of different levels of Py, R2

r�y
,

Px1, and R2
r�x1
, and different lines represent the relative

biases from BLVSM with an MNAR process, the mis-
specified model with an MAR assumption, and the
complete data respectively. The row panel effects
reflect the influence from Px1 and R2

r�x1
, and the col-

umn panel effects reflect the influence from Py and
R2
r�y
: We found that when the sample size was greater

than or equal to 200, the relative biases of b0, b1, b2,
b3, and r2e were ignorable and very close to the OLS
estimates from the complete-data. When the sample
size was less than or equal to 100, relative biases for
b0, b1, b2, and b3 in the Bayesian latent variable
approach decreased as (1) the missingness proportions
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Figure 4. Coverage rates of b0, b1, b2, b3, and r2e from the Bayesian latent variable selection model and the misspecified method with
an MAR assumption in Simulation Study 1 (MNAR selection process of Y is denoted as R2r�y and Y missingness is denoted as Py).
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of x1 and y decreased (see cells with different Py and
Px1 in Figures 5–7), (2) the MNAR selection process
of y became weaker (see cells across column panels
with different R2

r�y
in Figures 5–7), and (3) the MNAR

selection process of x1 became weaker (see cells across
row panels with different R2

r�x1
in Figures 5–7). But a

larger R2
r�y

decreased the positive biases of the r2e esti-
mate (see Figure 7). In contrast, the misspecified
method with an MAR assumption had the pattern of
underestimating b0, b1, b2, b3, and r2e unless when

the MNAR selection processes of the outcome and x1
were weak (R2

r�y
¼ R2

r�x1
¼ 0:1).

Turning to coverage rates, the influence from Px1
and R2

r�x1
on the QBP coverage rates for b0, b1, b2,

and r2e was not large. Therefore, the coverage rates for
b0, b1, b2, and r2e are presented in Figure 8 for the
R2
r�x1

¼ 0:5 and Px1 ¼ 0:4 (the severest missingness
case) conditions along with the minimum and max-
imum values of R2

r�y
and Py. Similar to Simulation

Study 1, the coverage rates of b0, b1, b2, and r2e from

Figure 5. Average relative biases of b3 from the Bayesian latent variable selection model, the misspecified method with an MAR
assumption, and the ordinary least squares estimation (OLS) with the original complete data in Simulation Study 2 (MNAR selection
process of Y is denoted as R2r�y , Y missingness is denoted as Py, MNAR selection process of X1 is denoted as R2r�x1 , and X1 missing-
ness is denoted as Px1).
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Figure 6. Average relative biases of b0 and b1 from the Bayesian latent variable selection model, the misspecified method with an
MAR assumption, and the ordinary least squares estimation (OLS) with the original complete data in Simulation Study 2 (MNAR
selection process of Y is denoted as R2r�y , Y missingness is denoted as Py, MNAR selection process of X1 is denoted as R2r�x1 , and X1
missingness is denoted as Px1).
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Figure 7. Average relative biases of b2 and r2e from the Bayesian latent variable selection model, the misspecified method with an
MAR assumption, and the ordinary least squares estimation (OLS) with the original complete data in Simulation Study 2 (MNAR
selection process of Y is denoted as R2r�y , Y missingness is denoted as Py, MNAR selection process of X1 is denoted as R2r�x1 , and X1
missingness is denoted as Px1).
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BLVSM were close to the nominal level (95%) except
when the sample size was small (e.g., SZ¼ 50 or 100;
see Figure 8). The coverage rates for b0, b1, b2, and
r2e from the misspecified method with an MAR
assumption were again too low (see Figure 8).

In addition to the substantive model, we examined
the covariate model and missingness model parame-
ters. The estimates of w0, w1, and r2e in the covariate
model were unbiased, and coverage rates were accept-
able from BLVSM across most conditions, except
when the sample size was small (see the supplemental
materials). When the sample size was greater than or
equal to 100, the estimates of w0, w1, and r2e from
BLVSM were essentially the same as the OLS esti-
mates from the complete-data. However, different
from the Study 1 where the covariate is MAR, in the
current simulation study, the misspecified method
with an MAR assumption produced biased point esti-
mates and considerable undercoverage relative to the
correctly specified model even with a large sample
size, particularly when the MNAR selection process
was strong (e.g., a large value of R2

r�x1
). Finally, consid-

ering the missingness model parameters in BLVSM,
c0, c1, cx, 1, 0, and cx, 1, 1, we observed biases and
undercoverage when the sample size was less than or
equal to 500 (see the supplemental materials), but this
bias apparently had no material impact on the sub-
stantive analysis. Again, it is encouraging that bias
was relegated to a part of the analysis that is not of
substantive interest.

As mentioned previously, BLVSM readily extends
to accommodate categorical covariates as well. We
conducted an additional simulation to generalize the
result of Simulation Study 2 to binary covariates. This
extra simulation study considered the same scenario
as Simulation Study 2, but with x1 as a binary vari-
able. The performance of BLVSM was similar to that
in the case of continuous covariates. In the interest of
space, we refer interested readers to Simulation Study
2S in the supplemental materials for additional details.

Simulation study 3: Misspecification

The challenging part of using MNAR methods is that
we cannot identify or prove which selection model or
missingness mechanism are the true ones. Ibrahim
et al. (2005) summarized two different views on speci-
fying the selection model. First, one can let data
empirically determine the selection model by compar-
ing the model fit index. One can then use the likeli-
hood ratio or AIC to evaluate the fit of each model.
However, “it is often the case that little information is

contained in the data regarding alternative nonignora-
ble models” (page 341). Alternatively, one can view a
set of MNAR analyses with different selection models
as a sensitivity analysis that examines how stable sub-
stantive model parameter estimates are across differ-
ent missingness models. Our method and related
software provide the opportunity to conduct sensitiv-
ity analysis with various selection models. The previ-
ous simulations clearly show that failing to model an
MNAR process (e.g., by fitting an MAR analysis to
data where the true process is MNAR) is detrimental.
Thus, the practical danger for researchers is specifying
a model with too few predictors of missingness, as it
will usually be difficult to know which covariates to
include in a given selection model. One potential rem-
edy for this model specification problem is to deploy
rich models that include all variables in the selection
model. The question is whether misspecifying the
selection model in this way has a detrimental effect
on the substantive model parameters.

To provide some practical guidelines, we conducted
additional simulations that examined the impact of
misspecifying missingness models by including too
many (or too few) predictors. Ibrahim et al. (2005)
cautioned against making the selection model too
complex and suggested that the main-effects model
usually is adequate. Thus, our simulation only focused
on the main-effects model (i.e., the missingness model
included all variables in the substantive analysis but
did not include interaction effects). Past literature on
selection models suggests that including predictors
from the analysis model may induce collinearity prob-
lems that are detrimental to estimation ( for details
refer to Puhani, 2000; Stolzenberg & Relles, 1990,
1997 ). The simulations in this section suggest that
this finding does not extend to BLVSM, and we ultim-
ately recommend including all variables from the sub-
stantive model in the missingness model.

Simulation study 3: Simulation design

The moderated regression model in Equation (4)
again served as the substantive model for the simula-
tion. We considered three types of missingness
scenarios. First, x1 was missing due to y, which indi-
cated a MAR scenario. In this scenario, we considered
three selection models: r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ fx, 1i
(misspecified), r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1yi þ fx, 1i (correctly
specified), and r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ cx, 1, 2x2i þ
cx, 1, 3yi þ fx, 1i (over-specified). Second, x1 was missing
completely at random (MCAR). In this scenario, we
considered two over-specified selection models: r�x, 1i ¼
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Figure 8. Coverage rates of b0, b1, b2, b3, and r2e from the Bayesian latent variable selection model and the misspecified method with
an MAR assumption in Simulation Study 2 (MNAR selection process of Y is denoted as R2r�y and Y missingness is denoted as Py).
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cx, 1, 0 þ cx, 1, 1x1i þ fx, 1i and r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ
cx, 1, 2x2i þ cx, 1, 3yi þ fx, 1i: The first two scenarios inves-
tigate the situation where a researcher incorrectly
applies a selection model to an analysis where the
missingness model is unnecessary. In the third
scenario, x1 was missing due to both x1 and y, which
indicated a mixture of MAR and MNAR processes. In
this scenario, we considered three selection models:
r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ fx, 1i (misspecified), r�x, 1i ¼
cx, 1, 0 þ cx, 1, 1x1i þ cx, 1, 2yi þ fx, 1i (correctly specified),
and r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ cx, 1, 2x2i þ cx, 1, 3yi þ fx, 1i
(over-specified). We also conducted additional simula-
tions that considered similarly misspecifications of the
outcome’s missingness model, but the results were
similar to that for missingness on the covariate.
Therefore, we focus on these three representative sim-
ulations. The simulation conditions were as follows.
The sample size (SZ) varied as 200, 500, and 1000.
The coefficient of determination in the substantive
model R2

y was fixed at 0.13. The missing data propor-
tion for x1 (Px1) was 0.2. and the pseudo coefficient of
determination between the cause of missingness and
the latent propensities of x1 (R2

r�x1
) was 0.25.

Simulation study 3: Simulation results

The convergence rates of all conditions and scenarios
were 100%. We present the relative biases of posterior
mode estimates (when the true value is 0, absolute
biases are presented instead) and the coverage rates of
QBP intervals in Table 1. Specifically, we focus on the
estimates of substantive models and selection models
when the selection models are over-specified. For
example, in the first scenario, when the selection
model is specified as r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ
cx, 1, 2x2i þ cx, 1, 3yi þ fx, 1i, the true values of cx, 1, 1
and cx, 1, 2 are 0.

When x1 was missing due to y (Scenario 1, an
MAR process), estimates were biased if we misspeci-
fied the fitted selection model by omitting the true
cause of missingness (i.e., r�x, 1i ¼ cx, 1, 0þ
cx, 1, 1x1i þ fx, 1i). Regardless of how much we increased
the sample size, the biases in the substantive model
estimates did not decrease, and the coverage rates
actually got worse. When the selection model was cor-
rectly specified in the sense that it included only the
true cause of missingness (i.e., r�x, 1i ¼ cx, 1, 0þ
cx, 1, 1yi þ fx, 1i), the bias values and coverage rates
were within the acceptable range, even with a sample
size as small as 200. When the selection model was
over-specified by including all variables from the
substantive analysis model as predictors (i.e.,

r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ cx, 1, 2x2i þ cx, 1, 3yi þ fx, 1i),
performance was generally quite good. Although the
biases of some parameters (in both the substantive
model and the selection model) were relatively large
with a sample size of 200, the coverage rates of the
parameters of the substantive model were otherwise
acceptable. Additionally, when the sample size increased,
the biases of the parameters in both the substantive
model and the selection model decreased and were near
zero. Specifically, the estimates of cx, 1, 1 and cx, 1, 2 were
very close to the true value 0. That is, x1 and x2 should
have no influence on the missingness of x1.

Next, consider the situation where x1 was missing
completely at random (Scenario 2). In this case, the
fitted selection models (i.e., r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ
fx, 1i and r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ cx, 1, 2x2iþ
cx, 1, 3yi þ fx, 1i) are over-specified because there are no
causes of missingness. Although the biases of some
parameters (in both the substantive model and the
selection model) were relatively large with a sample
size of 200, but the biases and coverage rates of the
parameters of the substantive model were otherwise
acceptable. Similar to the Scenario 1, when the sample
size increased, the biases of the parameters in both the
substantive model and the selection model decreased and
approximated zero. Specifically, the estimates of
cx, 1, 1, cx, 1, 2, and cx, 1, 3 were very close to the true value
0. That is, the two covariates and outcome should have
no influence on the missingness of x1.

Finally, consider the scenario where x1 was missing
due to both x1 and y (Scenario 3). If we omitted one
of the true causes of missingness in the selection
model (i.e., r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ fx, 1i), the biases
of estimates and coverage rates of the parameters in
the substantive model were unacceptable, regardless of
the sample size. When the selection model is correctly
specified (r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1i þ cx, 1, 2yi þ fx, 1i), the
parameter estimates and coverage rates were accept-
able even with a sample size of 200. Finally, when the
selection model was over-specified by including
unnecessary predictors (i.e., r�x, 1i ¼ cx, 1, 0 þ cx, 1, 1x1iþ
cx, 1, 2x2i þ cx, 1, 3yi þ fx, 1i), the biases of the parameters
in both the substantive model and the selection model
decreased as the sample size increased. The biases of
the substantive model and selection model parameters
reached acceptable levels (e.g., < 10% relative bias) at a
sample size of 500 and 1000, respectively. Consistent
with the findings from the previous two simulation
studies, the substantive model parameter estimates
were acceptable even when the missingness model
parameter estimates were biased.
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The simulations investigating misspecifications provide
the following conclusions: (1) omitting the true cause of
missingness caused biases and disrupted coverage rates,
(2) correct specification yielded accurate estimates and
acceptable coverage rates even with a relatively small sam-
ple size (i.e., 200), and (3) adding extra, unnecessary pre-
dictors to the missingness part of the selection model
caused biases when the sample size was relatively small,
but the coverage rates were close to the nominal level. In
the current simulation, as the sample size increased to
500, the biases of substantive model parameter estimates
due to over-specification generally diminished to below
the 10% threshold. We would like to highlight that when
the missingness model is over-specified, the true parame-
ters of the unnecessary predictors are 0 although in sam-
ples they are never estimated to be exactly 0. Simulation
Study 3 shows that the estimates from the over-specified
model can have ignorable biases and acceptable coverage
rates. Our conclusions seem to offer a fairly clear pre-
scription for researchers applying these models: specify
selection models that are more inclusive, including all
variables in the analysis model. This strategy provides a
realistic possibility of obtaining approximately unbiased
parameter estimates in sample sizes that are typical of the
behavior sciences, whereas adopting a more restrictive
specification that may omit potential predictors of miss-
ingness risks inducing substantial biases. We illustrate this
approach in the ensuing real data analysis example.

A real data example

In a marital satisfaction study at the University of
California, Los Angeles, a sample of 431 first-married
couples were asked to rate their marriage on a 8-item
scale twice in 2012 and 2014 respectively. The sum of
the ratings was treated as an index of marital satisfac-
tion. We are interested in whether wives’ marital satis-
faction at the first wave ðWS1Þ had an influence on
the husbands’ marital satisfaction at the second wave
ðHS2Þ after controlling husbands’ marital satisfaction
at the first wave ðHS1Þ, husbands’ education levels
(EDU), and husbands’ stress levels (STR). Therefore,
the substantive model is

HS2 ¼ b0 þ b1HS1þ b2WS1þ b3EDU þ b4STRþ e,
e � N 0, r2e

� �
(23)

The missing proportions in the husbands’ marital
satisfaction scores at the two waves and the wives’
marital satisfaction scores at the second wave were
13.2%, 22.3%, and 13.0%, respectively. The education
and stress level scores of husbands were complete.Ta
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All MAR- and MNAR-based methods including
BLVSM rely heavily on untestable assumptions of
missingness. We cannot prove the missingness is
MNAR or MAR. Similarly, we cannot prove whether
a specific MNAR selection model is appropriate for a
given data set. Given the inherent uncertainty
associated with conducting NMAR analysis, we fol-
lowed recommendations from Ibrahim et al. (2002) by
conducting sensitivity analysis that apply different
assumptions of missingness to the same data.
Additionally, following our conclusions from
Simulation Study 3, we modeled NMAR processes
with rich selection models that included all variables
in the substantive analyses (i.e., HS1, WS1, HS2, EDU,
and STR) as the predictors. When the MCMC chains
had difficulty in converging, we simplified the selec-
tion models by removing predictor variables. In this
real data example, we considered eight assumptions
(Tables 1 and 2). We used the forthcoming Blimp 3
application (Keller et al., 2019) to apply BLVSM, and
the Blimp code (both separate and sequential specifi-
cations) is illustrated in the Appendix. A typical appli-
cation might consist of the substantive regression, an
selection model for outcome’s missingness that fea-
tures all variables from the substantive model, and a
selection model for a covariate’s missingness, again
with all variables from the analysis as predictors. As
mentioned previously, Blimp allows for binary,
ordinal, or nominal covariates (and categorical out-
comes), and it readily accommodates interactive or
non-linear effects. Depending on the assumptions, it
is possible to fit these models in other packages. For
example, specialized Bayesian programs like WinBugs
or JAGS could certainly estimate these models. Based
on the R technical manual and L€udtke et al. (2020),
the R package ’mdmb’ (Robitzsch & Luedtke, 2019)
can handle an MAR or MNAR outcome and
covariates. The ’mdmb’ package uses the sequential
approach. Bayesian estimation can be used in con-
junction with a structural equation modeling frame-
work such as Mplus (L. Muth�en & Muth�en,
1998–2017) to incorporate selection models for an
outcome or a covariate, with two caveats (even when
users specify syntax by themselves). First, incomplete
covariates are assumed to be normally distributed,
although outcomes can be binary and ordinal. Second,
because the SEM framework is grounded in the multi-
variate normality assumption, interactive or non-linear
effects with missing data would be estimated with
potentially substantial biases (e.g., Bartlett et al., 2015;
Enders et al., 2018; Erler et al., 2016; Kim et al., 2015;
Seaman et al., 2012; Van Buuren et al., 2006).

In the first analysis, we assumed the covariates
(HS1 and WS1) and the outcome (HS2) were missing
at random (MAR). We used five MCMC chains with
different starting values, and the Gelman–Rubin
diagnostic (Gelman & Rubin, 1992) was used to check
the convergence of the five chains after the burning
period (Gelman & Rubin, 1992). As mentioned in the
simulation studies, we can get Bayesian estimates of
b0, b1, b2, b3, b4 and r2e from the MCMC algorithm
in the full Bayesian approach, and we can also gener-
ate multiple imputations. We report the posterior
mode estimates, the posterior standard deviations (i.e.,
standard deviation from posterior samples; SD), the
quantile-based probability (QBP) credible intervals,
and the deviance information criterion (DIC) in
Table 1. We reject H0 : b ¼ 0 when the QBP interval
does not cover 0. In addition to the full Bayesian
inferences, we applied multiple imputation with 100
imputed sets of data from the posterior samples by
BLVSM (each chain provided 20 sets of data). The R
and Mplus code for pooling the estimates and stand-
ard errors are illustrated in the Appendix. The point
estimates, standard errors, the Akaike information cri-
terion (AIC), and the Bayesian information criterion
(BIC) are in Table 2. Both the full Bayesian and mul-
tiple imputation results showed that wives’ marital
satisfaction at the first wave ðWS1Þ could significantly
predict husbands’ marital satisfaction at the second
wave ðHS2Þ after controlling for other variables, and
b̂2 was about 0.2. Additionally, the husbands’ marital
satisfaction at the first wave ðHS1Þ and husbands’
education levels (EDU) could significantly predict hus-
bands’ marital satisfaction at the second wave.

Although our simulation results suggest that over-
parameterizing a selection model by incorporating an
inclusive set of covariates is not problematic at cur-
rent sample size, specifying complex selection models
may not be feasible in every dataset. We reduce model
complexity by removing predictor variables in the
selection models if the complex selection models fail
to converge because the data contain insufficient
information to estimate such a complex model.
Additionally, we would not recommend treating all
variables are MNAR, as it seems unlikely that such
models would converge in practice. Rather, we suggest
a model-building procedure that researchers assume
one variable is MNAR first (when such a process is
theoretically justified), and move to the analyses
where two and more variables are MNAR. This is the
process we applied here.

In the second analysis, we assumed that WS1 and
HS2 were MAR and HS1 was MNAR, where the
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missingness of HS1 depended on HS1, WS1, HS2,
EDU, and STR. Using both the full Bayesian approach
and multiple imputation based on BLVSM, the esti-
mated coefficients and posterior standard deviations/
multiple imputation errors of the substantive model
are in Table 2. In addition, we provide the estimates
of the probit missingness model for HS1 (e.g., cHS1jHS1
andcHS1jHS2) in Table 2. We compared the substantive
parameter estimates in the current analysis to the
ones in the first analysis without any selection model.
As a practical guide, we investigated how much the
estimates changed in posterior standard deviation
units (SD; we used the SDs in the first analysis, which
were similar in magnitude to the imputation-based
standard errors). We found the estimates and hypoth-
esis testing results of the substantive model did not
noticeably differ from those with only MAR assump-
tions (the first analysis), and largest change (e.g., in
b̂2) was equivalent to about 0.7 SDs.

Third, we assumed that HS1 and HS2 were MAR,
and WS1 was MNAR, with the missingness of WS1
depended on HS1, WS1, HS2, EDU, and STR.
Compared to the first analysis, b̂1 changed about 1.4
posterior SDs (b̂1 was 0.636 and 0.558 in the first and
third assumptions, respectively) and other estimates
changed less than 1 posterior SD (see Table 2).

Fourth, we assumed that HS1 and WS1 were MAR,
and HS2 was MNAR. In this analysis, different from
the previous analyses, wives’ marital satisfaction at the
first wave failed to predict husbands’ marital satisfac-
tion at the second wave (b2). Compared to the first
analysis, most of the estimates changed more than 1
SD. More specifically, r̂2

e changed about 6.8 SDs, b̂1

changed about 1.6 SDs (b̂1 was 0.636 and 0.548 in the
first and fourth assumptions, respectively), and b̂2

changed about 1.5 SDs (b̂2 was 0.214 and 0.13 in
the first and fourth assumptions, respectively;
see Table 2). We tried to explore why the estimates
changed dramatically. We removed the predictors in
the selection model one by one and found when HS1
was removed, the estimates and inferences were
similar to those in the first analysis.

After pairing the substantive analysis with one
selection model, we next fitted models that incorpo-
rated a pair of selection models. Then in the fifth
model, we assumed that HS1 and WS1 were MNAR
and HS2 was MAR. Including all variables as predic-
tors in the missingness model led to nonconvergence,
therefore we did not include the outcome, HS2, in the
selection models. There is no clear guideline of how
to simplify the selection model. We suggest removing
one variable at a time, The estimates of the

substantive model and selection models are in Table
3. This model had the smallest DIC, AIC, and BIC.
The estimates and hypothesis testing results of the
substantive model did not noticeably differ from those
in the first analysis with only MAR assumptions. The
largest change is that b̂4 changed about 0.2 SDs (see
Table 3 for estimates).

In the sixth model, we assumed that HS1 and HS2
were MNAR, and WS1 was MAR. Compared to the
first analysis, b2 was not significant anymore and
most of the estimates changed more than 1 SD (e.g.,
r̂2
e changed about 8.1 SDs, b̂0 changed about 3.4 SDs,

and b̂2 changed about 1.8 SDs; see Table 3 for esti-
mates). The change of the estimates probably is prob-
ably due to assuming HS2 was MNAR based on the
results in the fourth assumption.

In the seventh models, we assumed that WS1 and
HS2 were MNAR, and HS1 was MAR. However, in
the seventh model, including all variables as predictors
in the missingness model led to nonconvergence,
therefore we did not include the outcome, HS2, in the
missingness model of WS1. Compared to the first
analysis, b2 was not significant anymore and most of
the estimates changed more than 1 SD (e.g., r̂2

e

changed about 6 SDs and b̂2 changed about 2.3 SDs;
see Table 3 for estimates). Again, we think the change
of the estimates is due to assuming HS2 was MNAR.

Finally, in the eighth model, we assumed HS1, WS1
and HS2 were all MNAR. However, the five chains
did not converge, even when we only include one pre-
dictor in the missingness model and used 6� 104 iter-
ations. Because the posterior distributions of multiple
parameters converged to two different modes, we did
not pursue this model. We suggest that researchers
should be cautious when assuming more than one
covariate are MNAR, paying careful attention to con-
vergence diagnostics such as the Gelman–Rubin diag-
nostic statistic.

Considered as a whole, when we assumed HS2 was
MNAR (the fourth, sixth, and seventh assumptions),
the influence of wives’ marital satisfaction at the first
wave on husbands’ marital satisfaction at the second
wave (b2) was no longer significant, which was differ-
ent from the result obtained when HS2 was MAR. We
also found when excluding HS1 from predictors in
the selection model of HS2 in the model 3, the results
were more consistent with the other models. The dif-
ficulty with the discrepancy between the models is
that a researcher cannot verify which model is more
plausible based on the data. If one’s substantive know-
ledge suggests that the NMAR process might be plaus-
ible, then a reasonable course of action is to present
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multiple sets of results (e.g., including the full sensitiv-
ity analysis in an online supplement). We don’t neces-
sarily view such discrepancies across models as
insurmountable or inherently problematic, nor do we
feel that it is necessary for a researcher to choose one
set of results - in fact, there is little basis for such a
choice beyond one’s expert opinion about the plausi-
bility of different processes. Online supplemental
documents offer researchers unlimited space with
which to report multiple sets of results, and we find it
just fine to declare that different assumptions about
the missingness process led to somewhat different
conclusions for certain model parameters. This won’t
always be the case, but sometimes it will. Certainly,
reporting two sets of results is a better alternative that
choosing just one, particularly when that choice
involves effects that are significant under one assump-
tion and non-significant under another. We believe
the importance of this exercise stems from doing a
thorough job of trying to understand if, how, and
why one’s analysis results are sensitive to missing data
assumptions, not choosing “the” best model.

Conclusion

In real data analysis, usually a missing at random
mechanism (MAR; missingness is related to observed
data but not to the unobserved values of itself) or
missing completely at random mechanism (MCAR;
missingness is unrelated to either observed or unob-
served data) is assumed. However, it is possible that
the underlying missingness mechanism is MNAR. If
we ignore the possibility of an MNAR selection pro-
cess by inappropriately applying an MAR-based pro-
cedure, previous research and our own simulations
have shown that parameter estimates generally were
biased (Enders, 2011; Fitzmaurice et al., 2012;
Graham, 2009; Yang & Maxwell, 2014). Building on
one of the major MNAR modeling frameworks – the
selection model – this paper outlined a Bayesian latent
variable selection model, BLVSM, that accommodates
an MNAR process on the outcome, covariates, or
both. This procedure offers a number of compelling
advantages: it (a) has a strong theoretical foundation
in the Bayesian framework, (b) can be either applied
in a full Bayesian framework where parameters in the
substantive model are calculated in MCMC steps, or
in a multiple imputation framework where the miss-
ing data are imputed by MCMC steps and the param-
eters in the substantive model are estimated by
frequentist methods later, (c) easily handles complete
or incomplete covariates (due to MCAR, MAR, or

MNAR), (d) allows the incomplete MAR or MNAR
covariates to involve interactions, non-linear terms,
and random slopes, and (e) accommodates categorical
variables. The procedure is implemented in a forth-
coming release of the software package Blimp (Keller
et al., 2019). We are unaware of other packages that
offer these modeling possibilities, although the R
package ’mdmb’ can estimate some selection models
in the EM framework.

Computer simulation results suggest that BLVSM is
quite effective when the outcome is MNAR and the
covariates are complete, MAR, or MNAR (regardless
of whether covariates are continuous or binary).
Except when the sample size was small (e.g.,
SZ � 100), estimates tracked closely with those from a
complete-data analysis. More specifically, the substan-
tive model parameter estimates were unbiased and
their coverage rates were acceptable, even when
parameters of the missingness model exhibited bias
(these parameters required large samples to achieve
their optimal properties). Moreover, convergence fail-
ures were rare, even when simultaneously modeling
an MNAR process for the outcome and covariate. In
addition, we found that the following factors influ-
enced the performance of BLVSM: the sample size,
the coefficient of determination in the substantive
model, the missingness proportion of y, the strength
of MNAR selection process of y, the missingness pro-
portion of covariates, and the strength of MAR/
MNAR selection process of covariates. With a rela-
tively small sample size, when the outcome was less
predictable from the covariates, the missingness pro-
portions of the covariates and the outcome were
larger, and the missingness process of the covariates
and the outcome were more MNAR and/or MAR, the
performance of BLVSM was less satisfactory. When
the sample size was large, the factors barely influenced
the performance. Multiple imputation as a hybrid
approach provided similar results as the full Bayesian
method, thus researchers have various options for
applying our approach. As noted in the introduction,
the literature has largely focused on MNAR processes
for the outcome variable except some work investigat-
ing MNAR covariates (Huang et al., 2005; Ibrahim
et al., 1999, 2005). Our approach is quite flexible
because it can accommodate MNAR covariates, MAR
covariates, MAR/MNAR outcome, or all of them sim-
ultaneously. Although putting the models in the previ-
ous literature together also can accommodate all of
the aforementioned cases, this paper is the first one
which systematically presents all cases. Additionally,
our work and the work from Ibrahim’s group have
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differences in terms of estimation method and
assumptions.

We explored the robustness of the proposed
method in Simulation Study 3. Based on the results,
we suggest specifying an inclusive selection model for
each variable. When MCMC chains have difficulty in
converging, we can simplify the selection models to
make the computation process easier. Although we
suggest an inclusive selection model, in practice, it is
not feasible to include all variables as predictors in the
selection model because it may lead to nonconver-
gence. Based on prior knowledge and existing theo-
ries, researchers can select several important
predictors to enter the selection model. Based on our
simulation results, there is no need to force the selec-
tion model to have only one or two predictors. We
also suggest conducting sensitivity analysis to investi-
gate how much the results change across missingness
assumptions and missingness models. More specific-
ally, we suggest a model-building procedure. We begin
with assuming all variables are MAR. Then we assume
one variable is MNAR (when such a process is theor-
etically justified), and move to the analyses where two
and more variables are MNAR, as we illustrated in
the real data example.

Due to the scope and word limitation of this paper,
we only focus on the missingness patterns that can be
handled by selection models. BLVSM has not general-
ized to other missingness patterns such as pattern
mixture models yet.

In sum, our paper outlined a new Bayesian latent
variable selection model for an MNAR process. When
missingness is truly MNAR, computer simulations
suggest that the proposed model can offer substantial
improvement over methods that apply an incorrect
MAR assumption. The Blimp application offers a
user-friendly environment for implementing BLVSM.
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Appendix

Blimp code for BLVSM, and R and Mplus code for
Multiple Imputation
###########################################
######## BLIMP CODE FOR HS1, WS1, AND HS2 ARE MAR
(SEPARATE SPECIFICATION)
###########################################
DATA: inputdata.csv;
VARIABLES: HS1 WS1 EDU STR HS2;
ORDINAL:;
NOMINAL:;
MISSING: 999;
CLUSTERID:;
MODEL: HS2 � HS1 WS1 EDU STR;
SEED: 90291;
BURN: 10000;
THIN: 10000; #Each imputed dataset is save
every 10000 iteratives;
NIMPS: 100;
CHAINS: 5 processors 5;
OPTIONS: psr covariatemodel;
SAVE:
separate imp�.dat; #Save 100 imputed datasets
for Mplus
stacked imps.dat; #Save 1 compiled imputed da-
taset for R
###########################################
######## BLIMP CODE FOR WS1 IS MAR, AND HS1 AND
HS2 ARE MNAR (SEPARATE SPECIFICATION)
###########################################
DATA: inputdata.csv;
VARIABLES: HS1 WS1 EDU STR HS2;
ORDINAL:;
NOMINAL:;
MISSING: 999;
CLUSTERID:;
MODEL:
HS2 � HS1 WS1 EDU STR;
HS1.missing�WS1 HS1 EDU STR;
HS2.missing�WS1 HS1 HS2 EDU STR;
SEED: 90291;
BURN: 15000;
THIN: 10000;
NIMPS: 100;
CHAINS: 5 processors 5;
OPTIONS: psr covariatemodel;
SAVE:
separate imp�.dat;
stacked imps.dat;
###########################################
######## BLIMP CODE FOR WS1 IS MAR, AND HS1 AND
HS2 ARE MNAR (SEQUENTIAL SPECIFICATION)

##########################################-
#################################
DATA: inputdata.csv;
VARIABLES: HS1 WS1 EDU STR HS2;
ORDINAL:;
NOMINAL:;
MISSING: 999;
CLUSTERID:;
MODEL: HS2 � HS1 WS1 EDU STR;
#Squential covariate model
HS1 � WS1 EDU STR;
WS1 � EDU STR;
#Squential selection model
HS2.missing�WS1 HS1 HS2 EDU STR HS1.missing;
HS1.missing�WS1 HS1 HS2 EDU STR;
SEED: 90291;
BURN: 15000;
THIN: 10000;
NIMPS: 100;
CHAINS: 5 processors 5;
OPTIONS: psr covariatemodel;
SAVE:
separate imp�.dat;
stacked imps.dat;
###########################################
######## MPLUS CODE
######## 100 copies of data sets must be ar-
ranged as imp1.dat, imp2.dat,…, imp100.dat.
###########################################
DATA:
file impnames.dat;
type imputation;
VARIABLE:
names HS1 WS1 EDU STR HS2;
usevariables HS1 WS1 EDU STR HS2; #dshidhsid;
MODEL:
HS2 on HS1 WS1 EDU STR;
OUTPUT:
stdyx;
###########################################
######## R CODE
###########################################
# Required packages
library(mitml)
library(rstudioapi)
# set working directory to location of R script
setwd(dirname(rstudioapi::getActiveDocu-
mentContext()$path))
impdata - read.table(paste0(getwd(), "/imps.dat"))
names(impdata) - c("imputation", "HS1", "WS1",
"EDU", "STR", "HS2")
# analyze data and pool estimates
implist - as.mitml.list(split(impdata, impda-
ta$imputation))
a n a l y s i s - w i t h ( i m p l i s t , l m ( H S 2 �
HS1 WS1 EDU STR))
estimates - testEstimates(analysis, var.
comp T, df.com NULL)
estimates
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